## Description

This cell line is a clonal derivative from the Cas9-Expressing Jurkat Cell Pool (BPS Bioscience, #78070). It was generated by limited dilution of the original pool and isolation of individual clones, which were screened based on Cas9 expression to obtain a high-expressing cell line. The expressed Cas9 protein includes a C-terminal FLAG tag.

## Background

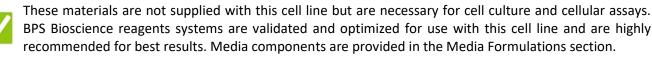
Cas9 (*Streptococcus pyogenes* CRISPR associated protein 9) is an endonuclease enzyme that, when recruited to a specific DNA sequence by the sgRNA (single guide RNA), introduces a double stranded break into the DNA. This double stranded break is repaired in mammalian cells either through Non-Homologous End Joining or Homologous Recombination. Non-Homologous End Joining often results in the deletion or insertion of several base pairs at the cut site, which, when resulting in a frameshift, causes the functional inactivation of the targeted gene. Cas9-expressing Jurkat cell lines can be transduced or electroporated with sgRNA targeting a gene of interest to quickly generate knock-out cell pools or cell lines.

## Application

- 1. Quickly generating knock-out cell pools or cell lines in Jurkat cells.
- 2. Implementing sgRNA screens in Cas9 expressing Jurkat cells.

### **Materials Provided**

| Components              | Format                                        |
|-------------------------|-----------------------------------------------|
| 2 vials of frozen cells | 2 x 10 <sup>6</sup> cells in 1 ml of 10% DMSO |


### Host Cell

Jurkat is a human leukemia cell line. Non-adherent T lymphocytes.

# **Mycoplasma Testing**

This cell line has been screened using the MycoAlert<sup>™</sup> Mycoplasma Detection Kit (Lonza, #LT07-118) to confirm the absence of Mycoplasma contamination. MycoAlert Assay Control Set (Lonza, #LT07-518) was used as a positive control.

### **Materials Required but Not Supplied**



### Materials Required for Cell Line Culture

| Name             | Ordering Information  |
|------------------|-----------------------|
| Thaw Medium 2    | BPS Bioscience #60184 |
| Growth Medium 2K | BPS Bioscience #78078 |



#### **Storage Conditions**



Cells will arrive upon dry ice and should immediately be thawed or stored in liquid nitrogen upon receipt. Do not use a -80°C freezer for long term storage. Contact technical support at support@bpsbioscience.com if the cells are not frozen in dry ice upon arrival.

#### **License Disclosure**

Visit bpsbioscience.com/license for the label license and other key information about this product.

### **Troubleshooting Guide**

For all questions, please email support@bpsbioscience.com.

#### **Media Formulations**

For best results, it is *highly recommended* to use these validated and optimized media from BPS Bioscience. To formulate a comparable but not BPS validated media, formulation components can be found below.



Note: Thaw Media does *not* contain selective antibiotics. However, Growth Media *does* contain selective antibiotics, which are used for maintaining cell lines over many passages. Cells should be grown at  $37^{\circ}$ C with 5% CO<sub>2</sub> using Growth Medium 2K.

### Media Required for Cell Line Culture

*Thaw Medium 2 (BPS Bioscience #60184):* RPMI 1640 medium (Thermo Fisher, #A1049101) supplemented with 10% FBS (Thermo Fisher, #26140079), 1% Penicillin/Streptomycin (Hyclone, #SV30010.01).

### Growth Medium 2K (BPS Bioscience #78078):

Thaw Medium 2 (BPS Bioscience, #60184) plus 0.25  $\mu$ g/ml of Puromycin (Invivogen, #ant-pr-1) to ensure recombinant expression.

Cells should be grown at 37°C with 5% CO<sub>2</sub> using Growth Medium 2K to ensure recombinant expression is maintained.

## **Recommended Culture Conditions**

Frozen cells:

- It is recommended to quickly thaw the frozen cells from liquid nitrogen in a 37°C water-bath, and then transfer the entire contents of the vial to a tube containing 10 ml of pre-warmed Thaw Medium 2 (no Puromycin).
- 2. Then spin the cells down, remove the supernatant, and resuspend the cells in 5 ml of pre-warmed Thaw Medium 2 (**no Puromycin**).
- 3. Transfer the resuspended cells to a T25 flask and incubate at  $37^{\circ}$ C in a 5% CO<sub>2</sub> incubator.
- 4. After 24 hours of culture, add an additional 3-4 ml of Thaw Medium 2 (no Puromycin).
- 5. At first passage, switch to Growth Medium 2K (contains Puromycin).
- 6. Cells should be split before they reach  $2 \times 10^6$  cells/ml.



## Cryopreservation:

- 1. When cells have reached 90% confluency, spin cells and remove medium from the pellet.
- 2. Resuspend the cells in freezing medium (10% DMSO in FBS).
- 3. Freeze cells using a reduced rate freezing box (-0.5°C to -1°C per minute) down to -80°C, then move cells to liquid nitrogen for long term storage.



Cells have been demonstrated to be stable for at least 15 passages; BPS recommends preparing frozen stocks so cells are not used beyond passage 20.

#### **Validation Data**

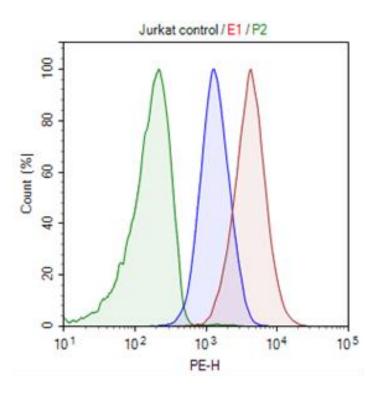



Figure 1. Flow cytometry analysis of intracellular expression of Cas9 in Jurkat cells.

Cells were stained with PE-labeled anti-FLAG antibody (BioLegend, #637309) and analyzed by flow cytometry. The parental Jurkat cells are shown in green, the Cas9-expressing Jurkat High expression cell line (BPS Bioscience, #78136-H) is shown in red, and the Cas9-expressing Jurkat Low expression cell line (BPS Bioscience, #78136-L) is shown in blue.



3

# **Vector and Sequence**

Streptococcus pyogenes Cas9, including a C-terminal FLAG tag, was transduced via lentivirus (BPS Bioscience, #78066).

MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSN EMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFF DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKI EKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKV KYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDIL EDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLT FKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGI KELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKS KLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFK TEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPOVNIVKKTEVOTGGFSKESILPKRNSDKLIARKKDWDPKKYGGF DSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHL FTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKKKDYKDDDDK

# **Related Products**

| Products                              | Catalog # | Size       |
|---------------------------------------|-----------|------------|
| Cas9-Expressing Jurkat cell pool      | 78070     | 2 vials    |
| Cas9 Lentivirus (puromycin selection) | 78066     | 500 μl x 2 |
| Cas9, His-tag (S. pyogenes)           | 100206-1  | 50 µg      |
| Thaw Medium 2                         | 60184-1   | 100 ml     |
| Growth Medium 2K                      | 78078     | 500 ml     |

# Notes

The CRISPR/CAS9 technology is covered under numerous patents, including U.S. Patent Nos. 8,697,359 and 8,771,945, as well as corresponding foreign patents applications, and patent rights.



4