Description

The Spike (JN.1 Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (eGFP Reporter) are replication incompetent, HIV-based lentiviral particles. They were produced with SARS-CoV-2 Spike (Genbank Accession #QHD43416.1 containing all the Omicron JN.1 mutations; see below for details) as the envelope glycoprotein, instead of the commonly used VSV-G. These pseudovirions also contain an eGFP reporter driven by a CMV promoter (Figure 1), allowing to measure the spike-mediated cell entry using the eGFP fluorescence signal.

The pseudovirions have been validated in a cellular assay with ACE2-HEK293 Recombinant Cell Line (#79951), a cell line that overexpresses ACE2 at high levels, as target cell line.

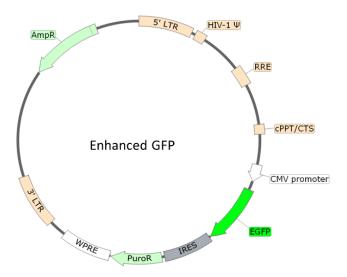


Figure 1. Schematic of the lenti-vector used to introduce the eGFP Reporter in the Spike (JN.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (eGFP Reporter).

Background

The pandemic coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As the first step of the viral replication, the virus attaches to the host cell surface before entering the cell. The viral Spike protein recognizes and attaches to the Angiotensin-Converting Enzyme 2 (ACE2) receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. Drugs targeting the interaction between the Spike protein of SARS-CoV-2 and ACE2 may offer protection against the viral infection.

Spike Mutations in JN.1 Omicron Variant:

T19I, LPP24-26del, A27S, S50L, HV69-70del, V127F, G142D, Y144del, F157S, R158G, N211del, L212I, V213G, L216F, H245N, A264D, I332V, G339H, K356T, S371F, S373P, S375F, T376A, R403K, D405N, R408S, K417N, N440K, V445H, G446S, N450D, L452W, L455S, N460K, S477N, T478K, N481K, V483del, E484K, F486P, Q498R, N501Y, Y505H, E554K, A570V, D614G, P621S, H655Y, N679K, P681R, N764K, D796Y, S739F, Q954H, N969K, P1143L

Application(s)

Screen or titrate neutralizing antibodies against the SARS-CoV-2 Spike Omicron JN.1 variant in ACE2-expressing cells.

Formulation

The lentivirus particles were produced from HEK293T cells. They are supplied in cell culture medium containing 90% DMEM + 10% FBS. Virus particles can be packaged in custom formulations by special request, for an additional fee.

1

Size and Titer

The titer will vary with each lot; the exact value is provided with each shipment.

Based on experiments performed by scientists at BPS Bioscience, 78983-1 (100 μ l size) provides sufficient pseudovirions to create a signal-to-noise ratio that allows to perform 100 reactions, and 78983-2 (500 μ l x 2) for 1000 reactions. The amount of virus added to the cells can be titrated further down according to the user's need.

Storage

Lentiviruses are shipped with dry ice. For long-term storage, it is recommended to store the virus at -80°C. Avoid repeated freeze-thaw cycles. Titers can drop significantly with each freeze-thaw cycle.

Biosafety

None of the HIV genes (gag, pol, rev) will be expressed in the transduced cells, as they are expressed from packaging plasmids lacking the packing signal. Although the pseudotyped lentiviruses are replication-incompetent, they require the use of a Biosafety Level 2 facility. BPS recommends following all local federal, state, and institutional regulations and using all appropriate safety precautions.

Materials Used in the Validation Assay but Not Supplied

These materials are not supplied with this lentivirus but are necessary to follow the designed protocol. BPS Bioscience media and reagents are all validated and optimized for use with this lentivirus and are highly recommended for best results.

Name	Ordering Information
Thaw Medium 1	BPS Bioscience #60187
ACE2- HEK293 Recombinant Cell Line	BPS Bioscience #79951
Lenti-Fuse [™] Polybrene Viral Transduction Enhancer	BPS Bioscience #78939
96-well white clear-bottom tissue culture plate	Corning #3610

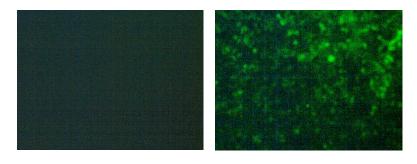
Assay Protocol

- The following protocol is a general guideline for transducing ACE2-HEK293 cells using these pseudovirions. The optimal transduction conditions (e.g. MOI, concentration of polybrene, time of assay development) should be optimized according to the cell type and the assay requirements. In most cell types, the expression of the reporter can be measured approximately 48-72 hours after transduction.
- To maximize the use of the virus, it is recommended that a pretest is performed to determine the optimal virus dosage per well. The pseudovirus can be diluted with Thaw Medium 1. In general, we recommend a 5-fold dilution.

Day 1:

- 1. Plate ACE2-HEK293 cells at a density of 5,000-10,000 cells per well in 50 μ l of Thaw Medium 1 into white clear-bottom 96-well tissue culture plate.
- 2. Thaw the pseudoviruses at Room Temperature (RT).
- 3. Add 1-5 μl of Spike (JN.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (eGFP reporter) into each well.

Optional: Add Lenti-Fuse^M *Polybrene Viral Transduction Enhancer to each well at a final concentration of 5* μ g/ml.


2

4. Incubate the plates at 37°C with 5% CO₂.

Day 3:

1. Approximately 48-72 hours after transduction, examine the expression of eGFP in the target cells by fluorescence microscopy, or other appropriate technique.

Validation Data

Figure 2. Fluorescence microscopy of ACE2-HEK293 cells transduced with Spike (JN.1, Omicron Variant) Pseudotyped Lentivirus (eGFP Reporter).

Approximately 5,000 cells/well of HEK293 parental cells (left) and ACE2-HEK293 cells (right) were seeded and transduced on the same day with 5 μ l/well of Spike (JN.1, Omicron variant) Pseudotyped Lentivirus (eGFP Reporter). 66 hours post-transduction, the expression of eGFP in the target cells was assessed under a fluorescence microscope. ACE2-HEK293 cells result in a greater transduction efficiency, compared with HEK293 parental cells, pointing to an ACE2 dependent transduction.

Data shown is representative. For lot-specific information, please contact BPS Bioscience, Inc. at support@bpsbioscience.com

Troubleshooting Guide

Visit bpsbioscience.com/lentivirus-faq for detailed troubleshooting instructions. For all further questions, please email support@bpsbioscience.com.

Related Products			
Products	Catalog #	Size	
Bald Lentiviral Pseudovirion (Luciferase Reporter)	79943	500 µl x 2	
ACE2 - HEK293 Recombinant Cell Line	79951	2 vials	
Spike (BA.2, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (eGFP Reporter)	78626	500 µl x 2	
Spike (B.1.1.529 BA.1, Omicron Variant) (SARS-CoV-2) Pseudotyped Lentivirus (eGFP Reporter)	78349	500 μl x 2	
Spike (BA.1.1, Omicron Variant R346K) (SARS-CoV-2) Pseudotyped Lentivirus (eGFP Reporter)	78624	500 μl x 2	

Version 032724

3