Description

The Spike Trimer (S1+S2) (B.1.1.529 BA.1, Omicron Variant) (SARS-CoV-2): ACE2 Inhibitor Screening Chemiluminescence Assay Kit is designed for screening and profiling inhibitors or neutralizing antibodies of the interaction between the SARS-CoV-2 Omicron variant Spike Trimer and human ACE2. This kit comes in a convenient 96-well format, with Biotinylated-ACE2, purified Spike Trimer (B.1.1.529 BA.1, Omicron Variant) protein (His-tagged), Streptavidin-HRP, and assay buffers for 100 reactions. The SARS-CoV-2 Spike Trimer, included in the kit, provides a biologically relevant model for the investigation of SARS-CoV-2/host cell interaction.

The assay requires only a few steps. First, SARS-CoV-2 Spike Trimer (B.1.1.529 BA.1, Omicron Variant) is coated on a 96-well plate overnight. After washing and blocking, the protein is pre-incubated with an inhibitor or neutralizing antibody. Upon subsequent incubation with Biotin-ACE2, the plate is treated with Streptavidin-HRP followed by addition of chemiluminescence HRP substrate to produce the luminescence signal.

Background

The COVID-19 pandemic is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The Spike glycoprotein is expressed on the surface of the virus as a trimer. Each Spike protein consists of two subunits, S1 and S2, and the S1 subunit contains the receptor binding domain (RBD) which recognizes and attaches to the ACE2 receptor found on the surface of type I and II pneumocytes, endothelial cells, and ciliated bronchial epithelial cells. SARS-CoV-2 Variant B.1.1.529 BA.1, also known as Omicron variant, was originally discovered in South Africa and has recently become a global variant of concern. This variant contains a number of mutations that increase infectivity and transmissibility.

Drugs targeting the interaction between SARS-CoV-2 Spike protein and human ACE2 may offer some protection against viral infection. This kit includes the **SARS-CoV-2 Spike Trimer (B.1.1.529 BA.1, Omicron Variant) protein** in its native trimeric conformation to provide a physiologically relevant screen for inhibitors of the Spike S1:ACE2 interaction.

Applications

This kit is useful for screening inhibitors of ACE2 binding to SARS-CoV-2 Spike Trimer (S1+S2) (B.1.1.529 BA.1, Omicron Variant)

Supplied Materials

Catalog #	Name	Amount	Storage
101343	Spike Trimer (S1+S2) (B.1.1.529 BA.1, Omicron Variant), His- Tag (SARS-CoV-2)*	20 μg	-80°C
100665	ACE2, His-Avi-Tag, Biotin-labeled HiP™	2 x 5 μg	-80°C
79311	3x Immuno Buffer 1	50 ml	-20°C
79728	Blocking Buffer 2	50 ml	+4°C
79742	Streptavidin-HRP	10 μΙ	+4°C
79670	ELISA ECL Substrate A (translucent bottle)	6 ml	Room Temp
	ELISA ECL Substrate B (brown bottle)	6 ml	Room Temp
79699	White 96-well microplate	1	Room Temp

^{*}The initial concentration of both ACE2 and Spike Trimer is lot-specific and will be indicated on the tube containing the protein.

Materials Required but Not Supplied

Name

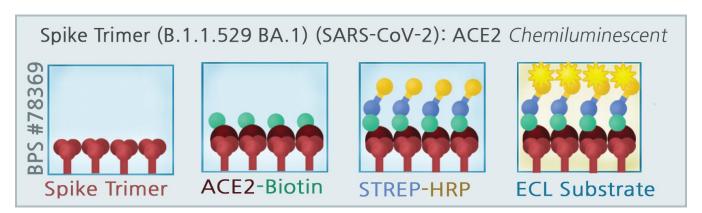
PBS (Phosphate buffered saline)

Neutralizing anti-Spike antibody (as a control)

Rotating or rocker platform

Luminescence microplate reader

Storage Conditions


This assay kit will perform optimally for up to 6 months from date of receipt when the materials are stored as directed.

Safety

This product is for research purposes only and not for human or therapeutic use. This product should be considered hazardous and is harmful by inhalation, in contact with skin, eyes, clothing, and if swallowed. If contact occurs, wash thoroughly.

Assay principle:

Contraindications

DMSO concentration in the final reaction should be ≤1%.

Assay Protocol

Inhibition of Spike Trimer (B.1.1.529 BA.1, Omicron Variant) binding to ACE2 using an anti-SARS-CoV-2 Spike antibody or inhibitor

All samples and controls should be tested in duplicate.

Day 1- Coating the plate with Spike Trimer protein overnight:

- 1) Thaw **Spike Trimer (B.1.1.529 BA.1, Omicron Variant) protein** on ice. Briefly spin the tube to recover its full contents. Note: **Spike protein** is very sensitive to freeze/thaw cycles. Avoid multiple freeze/thaw cycles. Do not re-use a diluted protein.
- 2) Dilute **Spike Trimer protein** to 4 μg/ml in PBS.
- 3) Add 50 µl of diluted **Spike Trimer protein** solution to each well. Incubate at 4°C overnight.

Day 2 - Blocking

- 4) Prepare **1x Immuno Buffer 1** by diluting **3x Immuno Buffer 1** in sterile distilled water.
- 5) After the overnight coating, discard the solution and wash the plate three times with 100 μl **1x Immuno Buffer 1**. Tap plate onto clean paper towels to remove excess liquid.
- 6) Block wells by adding 100 μl **Blocking Buffer 2** to each well. Incubate for 1 hour at room temperature with slow shaking. Remove the blocking solution and tap the plate onto clean paper towels to remove excess liquid.

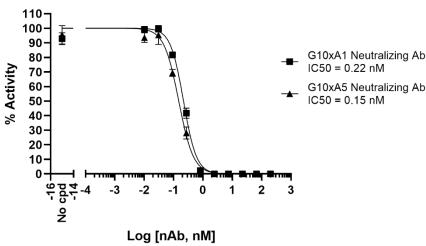
Step 1

- 1) Prepare dilutions of neutralizing anti-Spike antibody or test inhibitor in **Blocking Buffer 2** to the desired concentration (it is recommended to use serial dilutions). Prepare enough for 50 µl per well.
 - Note: high concentrations of DMSO may interfere with protein binding. If the test inhibitor compound is dissolved in DMSO, the final DMSO concentration in the assay should be $\leq 1\%$.
- 2) Add 50 μ l of the diluted antibody or inhibitor to the wells labeled "Test Inhibitor". To the wells labeled "Blank" and "Positive Control", add 50 μ l of **Blocking Buffer 2**.
- 3) Incubate the plate for 30 minutes (up to 1 hour) at room temperature with slow rotation.
- 4) Meanwhile, thaw the Biotin-ACE2 on ice, briefly spin to recover the full contents of the tube, and dilute it to 1.5 ng/μl in Blocking Buffer 2. Note: Biotin-ACE2 is very sensitive to freeze/thaw cycles. Avoid multiple freeze/thaw cycles. Do not re-use a diluted protein.
- 5) Add 50 μ l of diluted **Biotin-ACE2** to the wells labeled "Test Inhibitor" and "Positive Control". Add 50 μ l **Blocking Buffer 2** to the wells labeled "Blank". Incubate the plate at room temperature for 1 hour with slow agitation.

-	<u>Blank</u>	Positive Control	Test Inhibitor
Blocking Buffer 2	100 μΙ	50 μΙ	-
Test antibody or inhibitor	-	-	50 μΙ
ACE2-Biotin (1.5 ng/μl)	-	50 μΙ	50 μΙ
Total	100 μΙ	100 μΙ	100 μΙ

- 6) After 1 hour, discard the solution and wash the plate three times with 100 μl **1x Immuno Buffer 1**. Tap plate onto clean paper towels to remove excess liquid.
- 7) Block by adding 100 µl Blocking Buffer 2 to each well. Incubate for 10 minutes at room temperature. Discard the solution and tap plate onto clean paper towels to remove excess liquid.

Step 2


- 1) Dilute Streptavidin-HRP 1000-fold using Blocking Buffer 2.
- 2) Add 50 μ l of the **diluted Streptavidin-HRP** to each well and incubate the plate for 30 minutes to 1 hour at room temperature with slow shaking.
- 3) After 1 hour, discard the solution and wash the plate three times with 100 μl **1x Immuno Buffer 1**. Tap plate onto clean paper towels to remove excess liquid.
- 4) Just before use, mix 50 μl of ELISA ECL substrate A and 50 μl of ELISA ECL substrate B per well, then add 100 μl to each well. Discard any unused chemiluminescent reagent after use.
- 5) Immediately read in a luminometer or microtiter-plate capable of reading chemiluminescence. Subtract "blank" value from all other values.

Reading Chemiluminescence: Chemiluminescence is the emission of light (luminescence) which results from a chemical reaction. The detection of chemiluminescence requires no wavelength selection because the method used is emission photometry and is not emission spectrophotometry. To properly read chemiluminescence, make sure the plate reader is set for LUMINESCENCE mode. Typical integration time is 1 second, delay after plate movement is 100 msec. Do not use a filter when measuring light emission. Typical settings for the Synergy 2 BioTek plate reader are: use the "hole" position on the filter wheel; Optics position: Top; Read type: endpoint. Sensitivity may be adjusted based on the luminescence signal strength.

Example Results

Inhibition of ACE2: Spike Trimer (B.1.1.529 BA.1, Omicron Variant) binding by two anti-SARS-CoV-2 Spike neutralizing antibodies. Two anti-Spike neutralizing antibodies, G10xA1 (BPS Bioscience #101326) and G10xA5 (BPS Bioscience #101327), were evaluated using the Spike Trimer (S1+S2) (B.1.1.529 BA.1, Omicron Variant) (SARS-CoV-2): ACE2 Inhibitor Screening Chemiluminescence Assay Kit. The antibodies were serially diluted from 200 nM in 3-fold dilutions and tested following the assay kit protocol.

Data shown is representative. For lot-specific information, please contact BPS Bioscience at support@bpsbioscience.com

General Considerations

"Blank" Control: The "Blank" control is important to determine the background absorbance in the assay. We recommend doing these in duplicate.

Troubleshooting Guide

Visit bpsbioscience.com/assay-kits-faq for detailed troubleshooting instructions. For all further questions, please email support@bpsbioscience.com

References:

Hoffman M. *et al.*, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* 2020; **181:**1-10.

Related Products

Products	Catalog #	Size
Spike Neutralizing Antibody (Clone G10xA1) (SARS-CoV-2)		100 μg
Spike Neutralizing Antibody (Clone G10xA5) (SARS-CoV-2)	101327	100 μg
Spike Trimer (S1+S2) (B.1.1.529 BA.1, Omicron Variant) (SARS-CoV-2): ACE2 Inhibitor Screening Colorimetric Assay Kit	78365	96 reactions
Spike S1 RBD (B.1.1.529 BA.1, Omicron Variant) (SARS-CoV-2): ACE2 Inhibitor Screening Colorimetric Assay Kit	78339	96 reactions
Spike S1 RBD (B.1.617.2, Delta Variant), Avi-His-Tag (SARS-CoV-2) HiP™	101153	100 μg/1 mg
Spike Trimer (S1+S2) (B.1.617.2; Delta Variant), His-Tag (SARS-CoV-2)	101147	100 μg
Spike Trimer (S1+S2) (B.1.617.2.1, Delta Plus Variant), His-Tag (SARS-CoV-2)	101165	100 μg
ACE2, His-Avi-Tag, Biotin-labeled HiP™	100665	20 μg/50 μg
Spike Trimer (S1+S2) (B.1.1.7, Alpha Variant), His-Tag (SARS-CoV-2)	510334	100 μg/1 mg
Spike Trimer (S1+S2), His-tag (SARS-CoV-2)	100728	100 μg/1 mg
Spike S1 RBD (SARS-CoV-2): ACE2 Inhibitor Screening Assay Kit	79931	96 reactions
ACE2: Spike S1 RBD (SARS-CoV-2) Inhibitor Screening Assay Kit	79936	96 reactions
ACE2: Spike S1-Biotin (SARS-CoV-2) Inhibitor Screening Assay Kit	79945	96 reactions
Spike S1-Biotin (SARS-CoV-2): ACE2 TR-FRET Assay Kit	79949	96 reactions
Spike S1 (13-665), Fc Fusion, Avi-tag (SARS-CoV-2)	100678	100 μg/1 mg
Spike S1 (13-665), Fc fusion, Avi-tag, Biotin-Labeled (SARS-CoV-2)	100679	25 μg/50 μg
Spike S1 RBD, His-tag (SARS-CoV-2)		50 μg/100 μg
Spike S1 RBD, Fc fusion (SARS-CoV-2)		50 μg/100 μg
ACE2 Inhibitor Screening Assay Kit	79923	96 reactions
ACE2, His-Tag	11003	20 μg/100 μg

