Data Sheet
 Rat PDE7A Assay Kit
 Catalog \# 79634
 Size: 96 reactions

DESCRIPTION: Phosphodiesterases (PDEs) play an important role in the dynamic regulation of cAMP and cAMP signaling. Rat PDE7A, also known as high affinity cAMP-specific phosphodiesterase 7A, has been implicated in cardiovascular function and fertility.

The Rat PDE7A Assay Kit is designed for identification of inhibitors of Rat PDE7A using fluorescence polarization. The assay is based on the binding of a fluorescent nucleotide monophosphate generated by Rat PDE7A to the binding agent.

Phosphodiesterases catalyze the hydrolysis of the phosphodiester bond in dye-labeled cyclic monophosphates. Beads selectively bind the phosphate group in the nucleotide product. This increases the size of the nucleotide relative to unreacted cyclic monophosphate. In the polarization assay, dye molecules with absorption transition vectors parallel to the linearlypolarized excitation light are selectively excited. Dyes attached to the rapidly-rotating cyclic monophosphates will obtain random orientations and emit light with low polarization. Dyes attached to the slowly-rotating nucleotide-bead complexes will not have time to reorient and therefore will emit highly polarized light.

OUR PRODUCTS ARE FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR THERAPEUTIC USE.
To place your order, please contact us by Phone 1.858.202.1401 Fax 1.858.481.8694
Or you can Email us at: info@bpsbioscience.com
Please visit our website at: www.bpsbioscience.com

BPSBioscience

The Rat PDE7A Assay Kit comes in a convenient 96 -well format, with purified Rat PDE7A enzyme, fluorescently labeled substrate (cAMP), binding agent, and PDE assay buffer for 100 enzyme reactions. The key to the Rat PDE7A Assay Kit is the specific binding agent. Using this kit, only two simple steps on a microtiter plate are required for Rat PDE7A reactions. First, the fluorescently labeled cAMP is incubated with a sample containing Rat PDE7A for 1 hour. Second, a binding agent is added to the reaction mix to produce a change in fluorescent polarization that can then be measured using a fluorescence reader equipped for the measurement of fluorescence polarization.

COMPONENTS:

Catalog \#	Component	Amount	Storage	
60036	Rat PDE7A recombinant enzyme	$>1 \mu \mathrm{~g}$	$-80^{\circ} \mathrm{C}$	
60200	FAM-Cyclic-3', $5^{\prime}-\mathrm{AMP}(20 \mu \mathrm{M})$	$50 \mu \mathrm{l}$	$-80^{\circ} \mathrm{C}$	(Avoid
freeze/				
thaw				
cycles!)				

MATERIALS OR INSTRUMENTS REQUIRED BUT NOT SUPPLIED:

Fluorescent microplate reader capable to measure fluorescence polarization.
Adjustable micropipettor and sterile tips.
1,4-Dithiothreitol (DTT) , 1 M in anhydrous DMSO.
APPLICATIONS: Great for studying enzyme kinetics and screening small molecular inhibitors for drug discovery and HTS applications.

STABILITY: 6 months from date of receipt when stored as directed.

REFERENCES:

1. Morales-Garcia JA, , et al. (2011). Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease. Amédée T, ed. PLoS ONE. 6(2): e 17240.
2. Giembycz, M \& J. Smith, S. (2006). Phosphodiesterase 7 (PDE7) as a therapeutic target. Drugs of The Future - DRUG FUTURE. 31(3): 207.

BPS Bioscience

ASSAY PROTOCOL:

All samples and controls should be tested in duplicate.
Step 1:

1) Dilute $20 \mu \mathrm{M}$ FAM-Cyclic-3', 5^{\prime}-AMP stock 100 -fold with PDE assay buffer to make a 200 nM solution. Make only sufficient quantity needed for the assay; store remaining $20 \mu \mathrm{M}$ stock solution in aliquots at $-20^{\circ} \mathrm{C}$.
2) Dilute 1 M 1,4-Dithiothreitol (DTT) $1: 500$ into the diluted FAM-Cyclic-3', $\mathbf{5}^{\prime}$-AMP. For example, add 10μ I DTT (1M) to 5 ml of diluted FAM-Cyclic-3', 5^{\prime}-GMP (200 nM).
3) Add $25 \mu \mathrm{l}$ of FAM^{\prime} Cyclic- $3^{\prime}, 5^{\prime}$-AMP (200 nM) to each well designated "Positive Control," "Test Inhibitor," and "Substrate Control."
4) Add $45 \mu \mathrm{l}$ of PDE assay buffer to each well designated "Blank" and add $20 \mu \mathrm{l}$ of PDE assay buffer to each well designated "Substrate Control."
5) Add $5 \mu \mathrm{l}$ of inhibitor solution to each well designated "Test Inhibitor." For the wells labeled "Positive Control," "Substrate Control," and "Blank," add 5μ l of the same solution without inhibitor (inhibitor buffer). If inhibitor is dissolved in DMSO, make sure final DMSO concentration in the assay does not exceed 1%.
6) Thaw Rat PDE7A on ice. Upon first thaw, briefly spin tube containing enzyme to recover the full contents of the tube. Aliquot Rat PDE7A enzyme into single-use aliquots. Store remaining undiluted enzyme in aliquots at $-80^{\circ} \mathrm{C}$ immediately. Note: Rat PDE7A is very sensitive to freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.

	Positive Control	Test Inhibitor	Substrate Control	"Blank" Negative Control
FAM-Cyclic-3',5'-AMP (200 nM)	$25 \mu \mathrm{l}$	$25 \mu \mathrm{l}$	$25 \mu \mathrm{l}$	-
PDE assay buffer	-	-	$20 \mu \mathrm{l}$	$45 \mu \mathrm{l}$
Inhibitor (in PDE assay buffer)	-	$5 \mu \mathrm{l}$	-	-
Inhibitor Buffer (no inhibitor)	$5 \mu \mathrm{l}$	-	$5 \mu \mathrm{l}$	$5 \mu \mathrm{l}$
Rat PDE7A (0.02 ng/ $\mu \mathrm{l}$)	$20 \mu \mathrm{l}$	$20 \mu \mathrm{l}$	-	-
Total	$50 \mu \mathrm{l}$	$50 \mu \mathrm{l}$	$50 \mu \mathrm{l}$	50μ

BPSBioscience

7) Dilute Rat PDE7A in PDE assay buffer to $0.02 \mathrm{ng} / \mu \mathrm{l}$ ($0.4 \mathrm{ng} /$ reaction)*. Initiate reaction by adding $20 \mu \mathrm{l}$ of diluted Rat PDE7A ($0.02 \mathrm{ng} / \mu \mathrm{l}$) to the wells designated "Positive Control" and "Test Inhibitor." Discard any remaining diluted enzyme after use. *Note: Optimal enzyme concentration may vary with the specific activity of the enzyme.
8) Incubate the plate at room temperature for 1 hour.

Step 2:

1) Mix Binding Agent thoroughly and dilute Binding Agent 1:100 with Binding Agent Diluent.
2) Add $100 \mu \mathrm{l}$ of diluted Binding Agent to each microwell. Incubate at room temperature for 30 minutes with slow shaking.
3) Read the fluorescent polarization of the sample in a microtiter-plate reader equipped for the measurement of fluorescence polarization, capable of excitation at wavelengths ranging from $485 \pm 5 \mathrm{~nm}$ and detection of emitted light ranging from $528 \pm 10 \mathrm{~nm}$. Blank value is subtracted from all other values.

CALCULATING RESULTS:

Definition of Fluorescence Polarization

$$
P=\frac{I_{\|}-I_{\perp}}{I_{\|}+I_{\perp}}
$$

where $I_{\|}=$Intensity with polarizers parallel and $I_{\perp}=$ Intensity with polarizers perpendicular.
The equation above assumes that light is transmitted equally well through both parallel and perpendicular oriented polarizers. In practice, this is generally not true and a correction must be made to measure the absolute polarization state of the molecule. This correction factor is called the "G Factor".
$\mathrm{FP}($ measured $)=\left(\left[[1]-,\mathrm{G}^{*}\left[I_{\mathrm{L}}\right]\right)\right.$
\qquad
$\left(\left[I_{\|}\right]+G^{*}\left[I_{\perp}\right]\right)$

OUR PRODUCTS ARE FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR THERAPEUTIC USE.
To place your order, please contact us by Phone 1.858.202.1401 Fax 1.858.481.8694
Or you can Email us at: info@bpsbioscience.com
Please visit our website at: www.bpsbioscience.com

The G-factor is instrument-dependent and may vary slightly depending upon instrument and conditions. Please check the manual of your instrument to obtain the information about the establishment of the G-factor.

EXAMPLE OF ASSAY RESULTS:

Rat PDE7A1 Activity

BRL-50481, (Log [$\mu \mathrm{M}]$)

Inhibition of Rat PDE7A by BRL-50481 measured using the RAT PDE7A Assay Kit, BPS Bioscience \#79634. Fluorescence polarization was measured at 528 nm using a Tecan M1000 fluorescent microplate reader. Data shown is lot-specific. For lot-specific information, please contact BPS Bioscience, Inc. at info@bpsbioscience.com

OUR PRODUCTS ARE FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR THERAPEUTIC USE.
To place your order, please contact us by Phone 1.858.202.1401 Fax 1.858.481.8694
Or you can Email us at: info@bpsbioscience.com
Please visit our website at: www.bpsbioscience.com

RELATED PRODUCTS :

Product Name	Catalog \#	
Rat PDE7A-HEK293 Recombinant Cell Line	60408	
Rat PDE7A	60074	$10 \mu \mathrm{gials}$
Rat PDE7B	60075	$10 \mu \mathrm{~g}$
Rat PDE4B	60049	$5 \mu \mathrm{~g}$
Rat PDE4D	60054	$5 \mu \mathrm{~g}$
Rat PDE1B	60009	$10 \mu \mathrm{~g}$
Rat PDE2A	60022	$5 \mu \mathrm{~g}$
Rat PDE10A	60102	$5 \mu \mathrm{~g}$
PDE4D2	60048	$5 \mu \mathrm{~g}$
PDE4D3	60046	$5 \mu \mathrm{~g}$
PDE4D7	60047	$5 \mu \mathrm{~g}$
PDE7A/CRE Reporter - HEK293 Cell Line	60413	2 vials
PDE7A-HEK293 Recombinant Cell Line	60407	2 vials
PDE7A-HEK293 Recombinant Cell Line	60412	2 vials
PDE4A1A	60040	$10 \mu \mathrm{~g}$
PDE4B1	60041	$10 \mu \mathrm{~g}$
PDE4B2	60042	$5 \mu \mathrm{~g}$
Dog PDE4B	60055	$5 \mu \mathrm{~g}$
Rat PDE4B Assay Kit	79571	96 rxns.
PDE Assay Kit	60300	96 rxns.
PDE4B2 Assay Kit	60343	96 rxns.
PDE4A1A Assay Kit	60340	96 rxns.
PDE4D2 Assay Kit	60345	96 rxns.
PDE4D Cell-Based Activity Assay Kit	60505	500 rxns.

