

Fax: 1.858.481.8694

Email: support@bpsbioscience.com

<u>Data Sheet</u> METTL3/METTL14 Complex Chemiluminescent Assay Kit

Catalog #79614 Size: 96 reactions

DESCRIPTION: The METTL3/METTL14 Complex Chemiluminescent Assay Kit is designed to measure METTL3/METTL14 complex activity for screening and profiling applications. The METTL3/METTL14 Complex Chemiluminescent Assay Kit comes in a convenient format, with 96-well plate precoated with a specific substrate, the antibody adenosine, a secondary HRP-labeled methylated antibody, adenosylmethionine, methyltransferase assay buffer, and purified METTL3/METTL14 complex enzyme for 96 enzyme reactions. The key to the METTL3/METTL14 Complex Chemiluminescent Activity Assay Kit is a highly specific antibody that recognizes N6methylated adenosine. With this kit, only three simple steps are required for methyltransferase detection. First, S-adenosylmethionine is incubated with a sample containing assay buffer and methyltransferase enzyme. Next, primary antibody is added. Finally, the plate is treated with an HRP-labeled secondary antibody followed by addition of the ELISA ECL substrate to produce chemiluminescence that can then be measured using a chemiluminescence reader.

COMPONENTS:

Catalog #	Component	Amount	Stora	ige
100105	METTL3/METTL14 human enzyme	20 µg	-80°C	
52120	20 μM S-adenosylmethionine	250 µl	-80°C	
52140Z4	Primary antibody 29	100 µl	-80°C	
52131H	Secondary HRP-labeled antibody 2	10 µl	-80°C	
78368	4x METTL assay buffer*	3 ml	-20°C	(Avoid
	Blocking Buffer 5	50 ml	+4°C	freeze/
79670	ELISA ECL substrate A (transparent bottle)	6 ml	Room Temp.	thaw cycles!)
	ELISA ECL substrate B (brown bottle)	6 ml	Room Temp.	
	White microplate precoated with the RNA substrate**	1	+4°C	

^{*}Add 30 µl of 0.5 M DTT

^{**}Important: Use RNAse-free conditions!

Fax: 1.858.481.8694

Email: support@bpsbioscience.com

MATERIALS REQUIRED BUT NOT SUPPLIED:

PBST buffer (1x PBS, containing 0.05% Tween-20)
Dithiothreitol (0.5 M DTT)
Luminometer or microplate reader capable of reading chemiluminescence
Adjustable micropipettor and sterile tips
Rotating or rocker platform

APPLICATIONS: Great for studying enzyme kinetics and HTS applications.

CONTRAINDICATIONS: DMSO >1%, strong acids or bases, ionic detergents, high salt

STABILITY: One year from date of receipt when stored as directed.

REFERENCE: Liu, J., et al. Nat Chem Biol. 2014; **10(2):** 93–95.

ASSAY PROTOCOL:

All samples and controls should be tested in duplicate.

Step 1:

- Rehydrate the microwells by adding 150 μl of PBST buffer (1x PBS, containing 0.05% Tween-20) to every well. Incubate 15 minutes at room temperature. Tap the strip onto clean paper towels to remove liquid.
- 2) Thaw **S-adenosylmethionine** on ice. Upon first thaw, briefly spin tube containing S-adenosylmethionine to recover full content of the tube. Aliquot S-adenosylmethionine into single use aliquots. Store remaining S-adenosylmethionine in aliquots at -80°C immediately. *Note:* **S-adenosylmethionine** is sensitive to freeze/thaw cycles. Avoid multiple freeze-thaw cycles.
- 3) Add 30 μ l of 0.5 M DTT to 4x METTL assay buffer. Prepare the master mixture: N wells \times (7.5 μ l 4x METTL assay buffer + 2.5 μ l 20 μ M S-adenosylmethionine + 15 μ l distilled H_2O).
- 4) Add 25 μ l of master mixture to each well designated for the "Positive Control," "Test Inhibitor," and "Blank." For the "Substrate Control," add 7.5 μ l **4x METTL assay buffer** + 17.5 μ l **H**₂**O**.

6405 Mira Mesa Blvd. Suite 100 San Diego CA 92121

Tel: 1.858.202.1401 Fax: 1.858.481.8694

Email: support@bpsbioscience.com

- 5) Thaw METTL3/METTL14 complex enzyme on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Aliquot METTL3/ METTL14 complex enzyme into single use aliquots. Store remaining undiluted enzyme in aliquots at -80°C immediately. Note: METTL3/METTL14 complex enzyme is very sensitive to freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.
- 6) Dilute METTL3/METTL14 complex enzyme in 1x METTL assay buffer to 10 $ng/\mu l$ (200 $ng/20~\mu l$). Keep diluted enzyme on ice until use. Discard any unused diluted enzyme after use.

	Blank	Substrate Control	Positive Control	Test Inhibitor
4x METTL assay buffer	7.5 µl	7.5 µl	7.5 µl	7.5 µl
20 µM S-adenosylmethionine	2.5 µl	_	2.5 µl	2.5 µl
H ₂ O	15 µl	17.5 µl	15 µl	15 µl
Test Inhibitor/Activator	ı	_	I	5 µl
10% DMSO in water (Inhibitor buffer)	5 µl	5 µl	5 μΙ	_
1x METTL assay buffer	20 µl	_	-	_
METTL3/METTL14 Complex (10 ng/μl)	-	20 μΙ	20 μΙ	20 μΙ
Total	50 μl	50 μl	50 μl	50 μl

- 7) Add 5 µl of inhibitor solution of each well designated "Test Inhibitor." For the "Positive Control," "Substrate Control," and "Blank," add 5 µl of 10% DMSO in water (Inhibitor buffer).
- 8) Add 20 µl of **1x METTL buffer** to the well designated "Blank."
- 9) Initiate reaction by adding 20 µl of diluted METTL3/METTL14 complex (prepared as described above) to the wells labeled "Test Inhibitor," "Positive Control," and "Substrate Control." Incubate overnight at room temperature on a rotating platform. Seal the wells if necessary.
- 10) Wash the wells three times with 200 µl PBST buffer. Blot dry onto clean paper towels.
- 11) Add 100 µl of **Blocking buffer 5** to every well. Shake on a rotating platform for 10 min. Remove supernatant as above.

Fax: 1.858.481.8694

Email: <u>support@bpsbioscience.com</u>

Step 2:

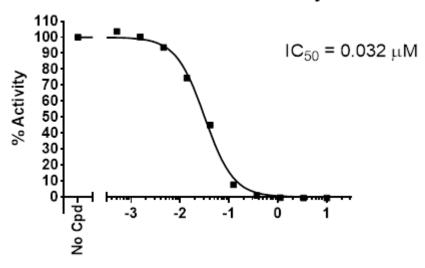
- 1) Dilute **Primary antibody 29** 100-fold with **Blocking buffer 5**.
- Add 100 µl per well. Incubate 1 hour at room temperature with slow shaking.
- 3) Wash plate three times with 200 μ I PBST buffer and incubate in **Blocking buffer 5** as in steps 1-10 and 1-11.

Step 3:

- 1) Dilute Secondary HRP-labeled antibody 2 1,000-fold with Blocking buffer 5.
- 2) Add 100 µl per well. Incubate for 30 minutes at room temperature with slow shaking.
- 3) Wash plate three times with PBST buffer and incubate in **Blocking buffer 5** as in steps 1-10 and 1-11.
- 4) Just before use, mix on ice 50 μl ELISA ECL substrate A and 50 μl ELISA ECL substrate B and add 100 μl per well. Discard any unused chemiluminescent reagent after use.
- 5) Immediately read sample in a luminometer or microtiter-plate reader capable of reading chemiluminescence. "Blank" value is subtracted from all readings.

Fax: 1.858.481.8694

Email: support@bpsbioscience.com


Reading Chemiluminescence:

Chemiluminescence is the emission of light (luminescence) which results from a chemical reaction. The detection of chemiluminescence requires no wavelength selection because the method used is emission photometry and is not emission spectrophotometry.

To properly read chemiluminescence, make sure the plate reader is set for LUMINESCENCE mode. Typical integration time is 1 second, delay after plate movement is 100 msec. Do not use a filter when measuring light emission. Typical settings for the Synergy 2 BioTek plate reader are: use the "hole" position on the filter wheel; Optics position: Top; Read type: endpoint. Sensitivity may be adjusted based on the luminescence of a control assay without enzyme (typically we set this value as 100).

Example of Assay Results:

METTL3/METTL14 Activity

SMT2457(PBST), (Log [μM])

METTL3/METTL14 complex enzyme activity, measured using the *METTL3/METTL14* Complex Chemiluminescent Assay Kit, BPS Bioscience Catalog #79614 Luminescence was measured using a Bio-Tek fluorescent microplate reader. Data shown is representative. For lot-specific information, please contact BPS Bioscience, Inc. at support@bpsbioscience.com.

6405 Mira Mesa Blvd. Suite 100 San Diego CA 92121

> Tel: 1.858.202.1401 Fax: 1.858.481.8694

Email: support@bpsbioscience.com

RELATED PRODUCTS

Product Name	Catalog #	<u>Size</u>
NSD2 enzyme (catalytic)	#51026	50 µg
NSD2 (782-end)/ReBPII enzyme	#51025	20 µg
NSD1 enzyme	#51024	50 µg
NSD3 (1021-1322) enzyme	#51036	50 µg
SETD2 enzyme	#53019	50 µg
SETD2 Chemiluminescent Assay Kit	#52060	96 reactions
Chaetocin	#27221	1 mg
4x HMT Assay Buffer 7	#52193	30 mL
FBXL10(KDM2B, JHDM1B) enzyme	#50120	20 µg
FBXL11(KDM2A) enzyme	#50102	20 µg

6405 Mira Mesa Blvd. Suite 100 San Diego CA 92121

Tel: 1.858.202.1401 Fax: 1.858.481.8694

Email: support@bpsbioscience.com

TROUBLESHOOTING GUIDE

Problem	Possible Cause	Solution	
Luminescence signal of positive control reaction is weak	METTL3/METTL14 complex enzyme has lost activity	Enzyme loses activity upon repeated freeze/thaw cycles. Use fresh enzyme (METTL3, BPS Bioscience #100105). Store enzyme in single-use aliquots. Increase time of enzyme incubation. Increase enzyme concentration.	
	Antibody reaction is insufficient	Increase time for antibody incubation. Avoid freeze/thaw cycles of antibody.	
	Incorrect settings on instruments	Refer to instrument instructions for settings to increase sensitivity of light detection.	
	Chemiluminescent reagents mixed too soon	Chemiluminescent solution should be used within 15 minutes of mixing. Ensure both reagents are properly mixed.	
Luminescent signal is erratic or varies widely among wells	Inaccurate pipetting/technique	Run duplicates of all reactions. Use a multichannel pipettor. Use master mixes to minimize errors.	
	Bubbles in wells	Pipette slowly to avoid bubble formation. Tap strip lightly to disperse bubbles; be careful not to splash between wells.	
Background (signal to noise ratio) is high	Insufficient washes	Increase number of washes. Increase wash volume. Increase Tween-20 concentration to 0.1% in PBST.	
	Sample solvent is inhibiting the enzyme	Run negative control assay including solvent. Maintain DMSO level at <1% Increase time of enzyme incubation.	
	Results are outside the linear range of the assay	Use different concentrations of enzyme (METTL3, BPS Bioscience #100105) to create a standard curve.	