

Fax: 1.858.481.8694

Email: support@bpsbioscience.com

Data Sheet EHMT1 (GLP) Chemiluminescent Assay Kit

Catalog # 53007 Size: 96 reactions

DESCRIPTION: The *EHMT1* (*GLP*) *Chemiluminescent Assay Kit* is designed to measure EHMT1 (also known as G9a-like protein) activity for screening and profiling applications. The *EHMT1* (*GLP*) *Chemiluminescent Assay Kit* comes in a convenient format, with a 96-well plate precoated with histone H3 peptide substrate, primary antibody against methylated lysine residue of Histone H3, the secondary HRP-labeled antibody, S-adenosylmethionine, methyltransferase assay buffer, and purified EHMT1 for 96 enzyme reactions. The key to the *EHMT1* (*GLP*) *Chemiluminescent Assay Kit* is a highly specific antibody that recognizes methylated K9 residue of H3. With this kit, only three simple steps on a microtiter plate are required for methyltransferase detection. First, S-adenosylmethionine is incubated with a sample containing assay buffer and methyltransferase enzyme for one hour. Next, primary antibody is added. Finally, the plate is treated with an HRP-labeled secondary antibody followed by addition of the ELISA ECL substrate to produce chemiluminescence that can then be measured using a chemiluminescence reader.

COMPONENTS:

Catalog #	Component	Amount	St	orage
51020	EHMT1 (GLP)	4 µg	-80°C	
52140E	Primary antibody 5	12.5 µl	-80°C	
52130H	Secondary HRP-labeled antibody 1	10 µl	-80°C	
52120	20 μM S-adenosylmethionine	250 µl	-80°C	(Avoid
52160	4x HMT assay buffer 1*	3 ml	-20°C	freeze/
79556	Blocking buffer 1	50 ml	+4°C	thaw
79670	ELISA ECL substrate (2	6 ml each	Room	cycles!)
	components)		Temp.	
	96-well plate precoated with histone	1 plate	+4°C	
	substrate			

^{*}Add 125 µl of 0.5M DTT.

MATERIALS OR INSTRUMENTS REQUIRED BUT NOT SUPPLIED:

TBST buffer (1 x TBS, pH 8.0, containing 0.05% Tween-20) Luminometer or microplate reader capable of reading chemiluminescence Adjustable micropipettor and sterile tips Rotating or rocker platform

APPLICATIONS: Great for studying enzyme kinetics and HTS applications.

CONTRAINDICATIONS: DMSO >1%, strong acids or bases, ionic detergents, high salt

Fax: 1.858.481.8694
Email: support@bpsbioscience.com

STABILITY: One year from date of receipt when stored as directed.

REFERENCE: Huang, J., et al., J Biol. Chem. 2010 Mar 26; **285(13)**: 9636-41.

ASSAY PROTOCOL:

All samples and controls should be tested in duplicate.

Step 1:

- 1) Rehydrate the microwells by adding 200 µl of TBST buffer (1x TBS, pH 8.0, containing 0.05% Tween-20) to every well. Incubate 15 minutes at room temperature. Tap the plate onto clean paper towels to remove liquid.
- 2) Thaw **S-adenosylmethionine** on ice. Upon first thaw, briefly spin tube containing **S-adenosylmethionine** to recover full contents of the tube. Aliquot **S-adenosylmethionine** into single use aliquots and store at -80°C. *Note:* **S-adenosylmethionine** is very sensitive to freeze/thaw cycles. Avoid multiple freeze-thaw cycles.
- 3) Add 125 μ I of 0.5M DTT. Prepare the master mixture: N wells \times (7.5 μ I **4x HMT assay buffer 1** + 2.5 μ I **20** μ M **S-adenosylmethionine** + 15 μ I H₂O). Add 25 μ I of master mixture to all wells labeled "Positive Control", "Test Sample", and "Blank". For wells labeled "Substrate Control", add 7.5 μ I **4x HMT assay buffer 1** + 17.5 μ I H₂O.

	Blank	Substrate Control	Positive Control	Test Sample
4x HMT assay buffer 1	7.5 µl	7.5 µl	7.5 µl	7.5 µl
20 μM S-adenosylmethionine	2.5 µl	-	2.5 µl	2.5 µl
H ₂ O	15 µl	17.5 µl	15 µl	15 µl
Test Inhibitor	_	I	ı	5 µl
Inhibitor buffer (no inhibitor)	5 µl	5 µl	5 µl	ı
1x HMT assay buffer 1	20 µl	I	ı	ı
Diluted EHMT1/GLP (2 ng/µl)	_	20 μΙ	20 µl	20 µl
Total	50 µl	50 μl	50 μl	50 μl

- 4) Add 5 µl of inhibitor solution of each well designated "Test Inhibitor".
- 5) For the "Positive Control", "Substrate Control" and "Blank", add 5 μl of the same solution without inhibitor (inhibitor buffer).

Fax: 1.858.481.8694

Email: support@bpsbioscience.com

- 6) Thaw **EHMT1 (GLP) enzyme** on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Aliquot **EHMT1 (GLP) enzyme** into single use aliquots. Store remaining undiluted enzyme in aliquots at -80°C immediately. *Note:* **EHMT1 (GLP)** is very sensitive to freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.
- 7) Dilute **EHMT1 (GLP) enzyme** in **1x HMT assay buffer 1** at 2 ng/µl (40 ng/20 µl). Keep diluted enzyme on ice until use. Discard any unused diluted enzyme after use. *Note:* Diluted enzyme may not be stable. Dilute the enzyme immediately before use.
- 8) Add 20 µl of 1x HMT buffer 1 to the wells designated "Blank".
- 9) Initiate reaction by adding 20 μl of diluted EHMT1 (GLP) enzyme to the wells designated "Positive Control", "Substrate Control", and "Test Sample ". Incubate at room temperature for 1 hour.
- 10) Remove the supernatant from the wells and wash the plate three times with 200 µl TBST buffer. Blot dry onto clean paper towels.
- 11) Add 100 µl of **Blocking buffer** to every well. Shake on a rotating platform for 10 min. Remove supernatant as above.

Step 2:

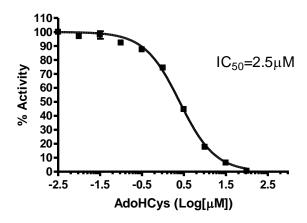
- 1) Dilute "Primary antibody 5" 800-fold with Blocking buffer.
- 2) Add 100 µl per well. Incubate 1 hour at room temperature with slow shaking.
- 3) Remove the supernatant from the wells and wash the plate three times with 200 µl TBST buffer and incubate in **Blocking buffer** as in steps 1-10 and 1-11.

Step 3:

- 1) Dilute "Secondary HRP-labeled antibody 1" 1,000-fold with Blocking buffer.
- 2) Add 100 µl per well. Incubate for 30 min at room temperature with slow shaking.

Fax: 1.858.481.8694
Email: support@bpsbioscience.com


- 3) Remove the supernatant from the wells and wash the plate three times with 200 µl TBST buffer and incubate in **Blocking buffer** as in steps 1-10 and 1-11.
- 4) Just before use, mix on ice 50 μl **ELISA ECL substrate A** and 50 μl **ELISA ECL substrate B** and add 100 μl per well. Discard any unused chemiluminescent reagent after use.
- 5) Immediately read sample in a luminometer or microtiter-plate capable of reading chemiluminescence. "Blank" value is subtracted from all readings.


Reading Chemiluminescence:

Chemiluminescence is the emission of light (luminescence) which results from a chemical reaction. The detection of chemiluminescence requires no wavelength selection because the method used is emission photometry and is not emission spectrophotometry.

To properly read chemiluminescence, make sure the plate reader is set for LUMINESCENCE mode. Typical integration time is 1 second, delay after plate movement is 100 msec. Do not use a filter when measuring light emission. Typical settings for the Synergy 2 BioTek plate reader are: use the "hole" position on the filter wheel; Optics position: Top; Read type: endpoint. Sensitivity may be adjusted based on the luminescence of a control assay without enzyme (typically we set this value as 100).

Example of Assay Results:

EHMT1 (GLP) enzyme activity, measured using the EHMT1 (GLP) Chemiluminescent Assay Kit, BPS Bioscience Catalog #53007. Luminescence was measured using a Bio-Tek fluorescent

Fax: 1.858.481.8694
Email: support@bpsbioscience.com

microplate reader. Data shown is lot-specific. For lot-specific information, please contact BPS Bioscience, Inc. at <u>info@bpsbioscience.com</u>.

RELATED PRODUCTS

Product Name	Catalog #	<u>Size</u>
EHMT1 (GLP)) enzyme	51020	50 µg
G9a (EHMT1) enzyme (E. coli)	51000	50 µg
G9a (EHMT1) enzyme (Sf9 cells)	51001	20 μg
SUV39H1 (82-end) enzyme	51070	50 µg
SUV39H1(full length) enzyme	51071	5 µg
SUV39H2 enzyme	51080	50 µg
G9a Homogeneous Assay Kit	52051	384 reactions
G9a Chemiluminescent Assay Kit	52001L	96 reactions
SUV39H1 Chemiluminescent Assay Kit	52045	96 reactions
SUV39H2 Chemiluminescent Assay Kit	52008	96 reactions
H3(K9) Universal Methyltransferase Assay Kit	52072	96 reactions

Fax: 1.858.481.8694

Email: support@bpsbioscience.com

TROUBLESHOOTING GUIDE

TROUBLESHOOTING GUIDE					
Problem	Possible Cause	Solution			
Luminescence signal of	EHMT1 has lost activity	Enzyme loses activity upon repeated			
positive control reaction is		freeze/thaw cycles. Use fresh EHMT1			
same as "blank" value.		(GLP), BPS Bioscience #51020. Store			
		enzyme in single-use aliquots.			
		Increase time of enzyme incubation.			
		Increase enzyme concentration.			
	Antibody reaction is	Increase time for primary antibody			
	insufficient	incubation. Avoid freeze/thaw cycles			
		of antibodies.			
	Incorrect settings on	Refer to instrument instructions for			
	instruments	settings to increase sensitivity of light			
		detection. See "Reading			
		Chemiluminescence" section above.			
	Chemiluminescent	Chemiluminescent solution should be			
	reagents mixed too	used within 15 minutes of mixing.			
	soon	Ensure both reagents are properly			
		mixed.			
Luminescent signal is	Inaccurate	Run duplicates of all reactions.			
erratic or varies widely	pipetting/technique	Use a multichannel pipettor.			
among wells		Use master mixes to minimize errors.			
	Bubbles in wells	Pipette slowly to avoid bubble			
		formation. Tap plate lightly to disperse			
		bubbles; be careful not to splash			
		between wells.			
Background (signal to noise	Insufficient washes	Increase number of washes.			
ratio) is high		Increase wash volume.			
		Increase Tween-20 concentration to			
		0.1% in TBST.			
	Sample solvent is	Run negative control assay including			
	inhibiting the enzyme	solvent. Maintain DMSO level at <1%			
		Increase time of enzyme incubation.			
	Results are outside the	Use different concentrations of			
	linear range of the	EHMT1 (GLP), BPS Bioscience			
	assay	#51020 to create a standard curve.			