Data Sheet

One-Step™ Luciferase Assay System
Catalog #: 60690-5
Size: 500 mL

Description

The One-Step™ Luciferase Assay System is designed to be used for high-throughput, sensitive quantitation of firefly luciferase activity in mammalian cell culture. The reagent consists of two components, a Luciferase Reagent Buffer (Component A) and Luciferase Reagent Substrate (Component B). Component A and Component B are combined to form a working solution that contains all the necessary components for cell lysis and luciferase quantitation. This assay system has several features:

- Sensitive – highly sensitive detection of firefly luciferase activity.
- Stable – the signal output is stable for more than two hours, providing flexibility with regard to incubation time
- Convenient – simple one-step, homogeneous protocol.
- High-throughput – one-step homogeneous protocol minimizes handling steps to support high-throughput screening applications
- Compatibility – works well with a variety of common media containing 0-10% serum and phenol red.
- Instrumentation – does not require a luminometer with injectors.

Application

- Monitor firefly (Photinus pyralis) luciferase activity in cultured mammalian cells.
- High-throughput screening using luciferase reporter cell lines

Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luciferase Reagent Buffer (Component A)</td>
<td>5 x 100 ml</td>
<td>-20°C</td>
</tr>
<tr>
<td>Luciferase Reagent Substrate, 100x (Component B)</td>
<td>5 x 1 mL</td>
<td>-20°C, Protect from light</td>
</tr>
</tbody>
</table>

Each system contains sufficient reagents to perform 100 assays of 100 μl each in 96-well plate.

Stability

At least 6 months when stored as directed. Upon first thaw, store in aliquots at -20°C. The reagent may be subjected to several freeze/thaw cycles with no effect on functionality, but it is recommended that freeze/thaw cycles be avoided whenever possible.
Background
Luciferase is the general term given to a class of oxidative enzymes that catalyze reactions that give off light, a process known as bioluminescence (Fig. 1). In this system, transcriptional activation of the gene of interest leads to a level of luciferase expression that is proportional to the level of gene activation.

Figure 1. Bioluminescent reaction catalyzed by luciferase. In the luciferase reaction, the cells are lysed with luciferase substrate containing D-luciferin. Firefly luciferase derived from reporter cells, using ATP and Mg$^{2+}$ as a co-substrate, catalyzes the conversion of D-luciferin to oxyluciferin in a reaction that gives off light. The amount of light given off is proportional to the amount of luciferase present in the reaction and thus, correlates with gene activation. Luminescence is read on a luminometer.

Important Product Information

- The reagent has been validated in a 96-well format. Other formats will require scaling and optimization by the end-user.
- Luciferase Reagent Buffer must be at ~ room temperature (20-25°C) before use.
- Avoid exposing to excessive heat or light during incubation.
- Different cell lines may exhibit variation in lysis ability and/or luminescence signal and may require slight optimization by the end-user.
- To analyze multiple plates, include a common control sample in each plate and normalize the luminescence of each plate to the control contained in the same plate.
- Background luminescence is a characteristic of luminometer performance, therefore, background luminescence must be subtracted from all readings for accuracy.

Materials Required but Not Supplied

- Multiwell tissue culture plates that are compatible with luminometer being used
- Mammalian cells that express firefly luciferase
- Appropriate cell culture medium
- Laboratory platform shaker
- Luminometer

OUR PRODUCTS ARE FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR THERAPEUTIC USE.

To place your order, please contact us by Phone 1.858.829.3082 Fax 1.858.481.8694
Or you can Email us at: info@bpsbioscience.com
Please visit our website at: www.bpsbioscience.com
General Assay Procedure

1. Thaw Luciferase Reagent Buffer (Component A) by placing the reagent in a room temperature water bath. Equilibrate the buffer to room temperature and mix well before use.

2. Calculate the amount of Luciferase Reagent needed for the experiment (Component A + Component B). Immediately prior to performing the experiment, prepare the luciferase assay working solution by diluting Luciferase Reagent Substrate (Component B) into Luciferase Reagent Buffer (Component A) at a 1:100 ratio and mix well. Avoid exposing to excessive light. *Only use enough of each component for the experiment, remaining Component A and Component B should be stored separately at -20°C.*

3. Remove multi-well plate containing mammalian cells from incubator. *Note: plates must be compatible with luminescence measurement with luminometer being used.*

4. Add equal volume of luciferase assay working solution (Component A + Component B) to the culture medium in each well. Example: 96-well plate with 100 µl of culture medium requires 100 µl of luciferase assay working solution per well.

5. Gently rock the plates for ≥15 minutes at room temperature. Measure firefly luminescence using a luminometer.

 The signal under these conditions will be stable for more than 2 hours at room temperature. For maximal light intensity, measure samples within 1 hour of reagent addition.
Figure 2. Comparison of One-Step™ Luciferase Assay System to another commercially available luciferase reagent. JAK/STAT pathway ISRE Reporter – HEK293 Cells (BPS Cat. # 60510) were seeded in a 96-well plate and treated with or without IFNα to activate the JAK/STAT pathway. The next day, luciferase reagents were added to the cells and luminescence was measured 15 minutes after reagent addition. Data are shown as background-subtracted luminescence.

Figure 3. One-Step™ Luciferase Assay System generates bright luminescence that is stable for hours in luciferase-reporter cells. JAK/STAT pathway ISRE Reporter – HEK293 Cells (BPS Cat. #60510) were seeded in a 96-well plate and treated with or without IFNα. The next day, luciferase reagents were added to the cells and luminescence was measured from 5 minutes to 2 hours after reagent addition. Data are shown as background-subtracted luminescence.

Related Products:

<table>
<thead>
<tr>
<th>Product</th>
<th>Cat. #</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual Luciferase Assay System</td>
<td>60683-1</td>
<td>10mL</td>
</tr>
<tr>
<td>PD-1 / NFAT Reporter - Jurkat Recombinant Cell Line</td>
<td>60535</td>
<td>2 vials</td>
</tr>
<tr>
<td>TIGIT / NFAT Reporter - Jurkat Cell Line</td>
<td>60538</td>
<td>2 vials</td>
</tr>
<tr>
<td>GITR / NF-κB Luciferase Reporter (Luc) - Jurkat Cell Line</td>
<td>60546</td>
<td>2 vials</td>
</tr>
<tr>
<td>CTLA4 / IL-2 Reporter - Jurkat Recombinant Cell Line</td>
<td>79525</td>
<td>2 vials</td>
</tr>
<tr>
<td>TGF/SMAD Signaling Pathway SBE Reporter – HEK293 Cell Line</td>
<td>60653</td>
<td>2 vials</td>
</tr>
<tr>
<td>Myc Reporter (Luc) – HCT116 Cell Line</td>
<td>60520</td>
<td>2 vials</td>
</tr>
<tr>
<td>Gli Reporter – NIH3T3 Cell Line</td>
<td>60409</td>
<td>2 vials</td>
</tr>
</tbody>
</table>